(KuybyshevFire departments)	SHUBIN,	S. Fire brigade dispatcher's desk. Posh.delo 3 no.1:15 Ja '57. (MIRA 10:4)
		(MIRA 10:47 (KuybyshevFire departments)
and the control of the		

SHUBIN, Stepan Fedorovich, inzh.; CHLAGOLEV, L.S., inzh., red.; NINENYAGI, D.K., red.izd-va; GUSEVA, S.S., tekhn.red.

[Heating and ventilating livestock barns] Teplosnabzhenie i ventiliatsiia zhivotnovodcheskikh pomeshchenii. Moskva. Gos.izd-vo lit-ry po stroit. i arkhit., 1957. 122 p.

(MIRA 12:5)

(Barns -- Heating and ventilating)

uraind	S. (Kotel'nikovo, Stalingradskaya obl	ast')
SE IDIN	"Veselyy", the new collective farm se 29 7 58. (Kotel nikovo District	ttlement. Sel'. stroi. 12 no.2: (MIRA 11:2)
	ADUGI HIAO.	

ZONTOV, Ye.; BORISENKOV, M.; NIKIMOROV, P.; SHUBIN, S.

For the further consolidation of collective farm finance.
Den. i kred. 18 no.11:52-60 N'60. (MIRA 13:11)

1. Upravlyayushchiy Permskoy kontoroy Gosbanka (for Borisenkov).
2. Předsedatel' kolkhoza "Pamyat' Il'icha" Sarayevskogo rayona
Ryazanskoy oblasti (for Nikiforov). 3. Bukhgalter kolkhoza
"Pamyat' Il'icha" Sarayevskogo rayona Ryazanskoy oblasti (for Shubin).

(Collective farms-Finance)

Heating and ventilation of service buildings on farms. Vod. i san. tekh. no.6:24-27 Je '61 (MIRA 14:6) (Farm buildings-Heating and ventilation)

SHUBIN, S.G., kand. tekhn. nauk

Analytical method of determining the operational oil temperature in the lubrication layer of diesel engine cylinders. Trudy Khab.

IIT no.10:50-55 '59. (MIRA 12:7)

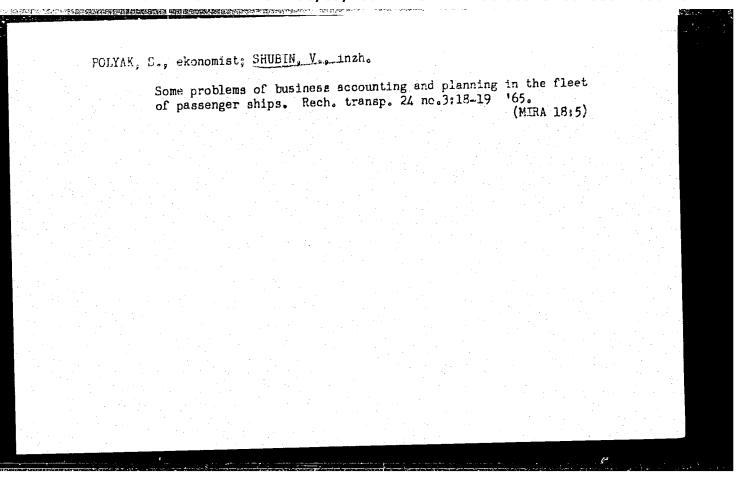
(Diesel engines--Lubrication)

DEMOCHKO, Ivan Ivanovich; SHUBIN, Sergey Sergeyevich; LYUBIMOV, N.G., otv.red.; CHANTSSVA, G.M., tekhn.red.

[SBL-4-2 scraper winch] Screpernaia lebedka SBL-4-2. Moskve, Ugletekhizdet, 1959. 30 p.

(Coal mining machinery)

ABRAMOV, B.; SHUBIN, V.

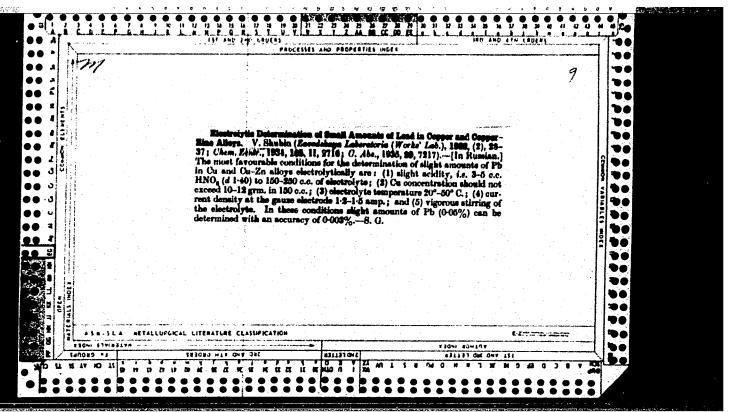

Peas in northern Gorkiy Province. Zemledelie 24 no.1:45-46 Ja (MIRA 15:2)

1. Predsedatel opytno-pokazatel nogo kolkhoza "Traktor", Urenskogo rayona (for Abramov). 2. Glavnyy agronom kolkhoza "Traktor", Urenskogo rayona (for Shubin).

(Gorkiy Province--Peas)

MUSTYATSA, V., inzh.; SHUBIN, V., inzh.

Automatic measuring out of liquid gas in the filling of tanks. Zhil.
-kom. khoz. 12 no.10:28-29 Ja 162. (MIRA 16:2)
(Liquified petroleum gas)



SHUBIN, V.A. (Buy); KOROVALOV, V.M. (Karasuk); PRACHKO, P.Ye. (Simferopol')

More rights for railroad divisions. Zhel.dor.transp. 45no.7:60-64 Jl '63. (MIRA 16:9)

1. Nachal'nik finansovogo otdela Buyskogo otdeleniya Severnoy dorogi (for Shubin). 2. Nachal'nik planovo-tekhniko-ekonomicheskogo otdela Karasukskogo otdeleniya Zapadno-Sibirskoy dorogi (for Konovalov). 3. Nachal'nik planovo-tekhniko-ekonomicheskogo otdela Krymskogo otdeleniya Pridneprovskoy dorogi (for Prachko).

(Railroads-Management)

SHUBIN, V.A., Cand fech ci -- (diss) "Study of the teta=
reduction of titanium chloride with nitrate." Mos,
1958, 8 pp (Min of H.gher Education USSR. Mos Inst of
Non-Ferrous Metals and Gold im M.I. Kalinin. Chair
of "Metallurgy of Light Metals") 150 copies (KL, 50-58, 126)

- 89 -

SOV/149-58-5-11/18

Shubin, V.A. and Bazukhin, V.A. AUTHORS:

The Effect of Physical Conditions During the Sodium-TITIE:

thermal Reduction of Titanium Chlorides on the Particle Size of Titanium (Zavisimost' krupnosti zeren titana ot

fizicheskikh usloviy pri natriyetermicheskom vos-

stanovlenii yego khloridov)

Izvestiya Vysshikh Uchebnykh Zavedeniy, Tsvetnaya PERIODICAL:

Metallurgiya, 1958, Nr 5, pp 98 - 106 + 4 plates (USSR)

It was shown by the authors in their earlier work that in the 200 to 700 °C temperature interval, reduction of ABSTRACT:

TiCl, by sodium involves formation of sub-chlorides of Ti, the reaction proceeding according to:

 $\operatorname{Ti\acute{cl}}_4 \to \operatorname{TiCl}_3 \to \operatorname{TiCl}_2 \to \operatorname{TiCl} \to \operatorname{Ti}$. In the present

work the effect of temperature, pressure of argon, excess

of sodium and stirring of the reacting substances on the particle size of the produced titanium and on the

specific surface area of Ti particles was studied.

results of the preliminary experiments showed that if the walls of the reaction vessel were maintained at a

constant temperature, it was possible to maintain the

Cardl/10

SOV/149-58-5-11/18
The Effect of Physical Conditions During the Sodium-thermal
Reduction of Titanium Chlorides on the Particle Size of Titanium

interior of the reaction chamber at a constant temperature by admitting $TiCl_{iL}$ at a slow and uniform In the first series of experiments 40 g Na was placed in a 200 ml capacity crucible and 40 g TiCl4 (corresponding to approx. 50% sodium consumption) was fed in the reaction vessel (Figure 1) at the rate of 1.33 g/min for 30 min, the pressure of A being 40 mm Hg. The variation of the particle size of titanium obtained under these conditions at various temperatures is shown in Figure 2, graphs 1 and 2. Graphs 3 and 4 in the same diagram show the variation of the specific surface area of the metal powder measured by the quantity (mg) of methyl acohol adsorbed by 1 g of Ti powder (graphs 1 and 3 - no stirring employed; graphs 2 and 4 - the reacting mass stirred). Both the size and the specific surface area of the particles increased with rising. temperature. To explain the comparatively rapid increase in the particle size at 700 °C, a longitudinal section

Card2/10

SOV/149-58-5-11/18

The Effect of Physical Conditions During the Sodium-thermal Reduction of Titanium Chlorides on the Particle Size of Titanium of the contents of the crucible (Figure 3), quenched at the moment when the supply of TiCl4 was cut off, was examined. The top of the solidified mass, which had been obtained without stirring, was covered with small, reddish-violet, loosely adhering TiCl5 crystals which could be easily removed by brushing and by application of a jet of compressed nitrogen. However, the surface cleaned in this compressed not smooth, showing protrusions of thread-like

compressed nitrogen. However, the surface of the manner was not smooth, showing protrusions of thread-like Ti agglomerates (detail 1, Figure 3) which extended throughout the reacting mass (detail 2). The Ti agglomerates, extracted from the reacting mass by careful leaching, are shown in a microphotograph reproduced in Figure 4. Under the reacting mass characterised by a dark grey colour indicating the presence of Ti and TiCl₂, a cavity

(detail 3, Figure 3) was formed. The lower part of the crucible was filled with sodium (detail 5) connected with the reacting mass by a meniscus. In the centre of the crucible, the reacting mass and the sodium layer were Card3/10 joined by a stalactite-like mass of fused mixture of

SOV/149-58-5-11/18

The Effect of Physical Conditions During the Sodium-thermal Reduction of Titanium Chlorides on the Particle Size of Titanium

PARTY OF THE PARTY

chlorides of sodium and titanium (detail 4). Comparison of the sections of the crucible contents quenched from various temperatures showed that the reacting mass, which constitutes a comparatively loose mixture at lower temperatures, at 600 and, particularly at 700 °C, becomes a compact mass, obviously as a result of the formation of a low melting-point mixture of NaCl and sub-chlorides of titanium. The inhibiting action of NaCl on the growth of Ti particles and their agglomerates was studied in the following manner. With the reaction chamber temperature maintained at 750 °C, one end of a closely tied bundle of several iron wires was immersed in the fused sodium which was drawn upwards by the capillary forces to come in contact with TiCl₄. The fused mixture of NaCl formed

during the reaction flowed downwards coming in contact with Na. As the lower chlorides of Ti reacted with Na, the melting point of the chloride mixture increased until the moment was reached when it solidified. As a result, the

Card4/10

SOV/149-58-5-11/18
The Effect of Physical Conditions During the Sodium-thermal Reduction of Titanium Chlorides on the Particle Size of Titanium

Ti sponge was obtained in the form of comparatively large clusters separated from each other and adhering strongly to the iron wires. One such test piece (natural size) with sodium and the fused salts leached away is shown in Figure 5 and the following interpretation of the results of this experiment is given. Once a nucleus of metallic Ti has been formed, the reducing reaction takes place in its immediate vicinity and the flow of fused chlorides does not prevent the growth of Ti agglomerates. However, as the NaCl concentration increases, this salt gradually covers the Ti agglomerate and prevents TiCl₄ from reaching Na-coated titanium. At this

stage, the locus of the reaction is shifted upwards following the flow of sodium and it is postulated that the Ti agglomerates in the reacting mass shown in Figure 3 are formed in a similar manner. In the next stage of the investigation, all experiments were carried out at 800 °C and stirring (120 rev/min) was employed. When the effect of the pressure of argon was studied, 350 g Na was placed

Card5/10

SOV/149-58-5-11/18

The Effect of Physical Conditions During the Sodium-thermal Reduction of Titanium Chlorides on the Particle Size of Titanium

in the crucible and the equivalent quantity of TiCl4 (720 g) was used. Figure 6 shows that both the size (graph 1) and the specific surface area (graph 2) of Ti particles increased with the increasing pressure of argon. Not only the particle size but also the size of Ti agglomerates increased with the increasing A pressure: at PA = 380 mm Hg, some of the reduced Ti was present in the

reacting mass in the form of pellets up to 20 mm diameter containing Ti - 80 to 85%, NaCl 10 to 13% and Na 4-7%. A microphotograph of such a pellet is shown in Figure 7. The effect of excess Na was studied under the following conditions: rate of admission of TiCl4 - 9 g/min;

duration - 80 min; pressure of argon - 380 mm Hg; stirring at 120 rev/min. As can be seen in Figure 8, both the size (graph 1) and the specific surface area of the sodiumreduced Ti particles increased when the relative amount of the reducing agent decreased. Under favourable conditions, large Ti pellets were formed which could not be easily Card6/10 broken and which sometimes were quite ductile.

SOV/149-58-5-11/18
The Effect of Physical Conditions During the Sodium-thermal
Reduction of Titanium Chlorides on the Particle Size of Titanium

postulated that these pellets, clearly discernible in the section of the reacting mass shown in Figure 9, are formed as a result of the reducing reaction taking place preferentially on the surface of small Ti agglomerates coated with Na, which are welded together when the reacting mass is stirred. The general conclusions of the present research can be summarised as follows:

i) Ti can be obtained by sodium reaction of TiCl₄ in the 300 to 800 °C temperature range. It is more convenient to use lower temperatures but if no stirring is employed, a solid crust of Ti salts formed on the surface of sodium stops the reaction. If stirring is employed, better utilisation of Na is attained if reduction of TiCl₄ takes

place at temperatures at which the produced chlorides remain solid. However, even when the loose reacting mixture is stirred with the excess Na, and when TiCl₄ is admitted at a slow rate, sub-chlorides of Ti are formed, their

at a slow rate, sub-chlorides of Ti are formed, their concentration increasing with falling temperature. The

Card7/10

SOV/149-58-5-11/18

The Effect of Physical Conditions During the Sodium-thermal Reduction of Titanium Chlorides on the Particle Size of Titanium

quality of the finely divided Ti obtained under these conditions deteriorates rapidly owing to exidation; ii) when the temperature of the reaction is maintained at 600 - 700 °C a stage is reached when, owing to the formation of a low-melting-point chloride mixture which later locally and/or temporarily solidifies, the reacting mass can no longer be stirred. In the absence of stirring the process of cementation of the reacting mass is accelerated, as a result of which the interaction between Na and TiCl, is hindered and the concentration of sub-

chlorides of Ti is increased; iii) although NaCl melts at 800 °C, the reduction of TiCl4 at this temperature is complicated by the following

a) volatilisation of Na; b) the reaction taking place partly in the gaseous phase; c) distillation of the sub-chlorides of Ti; d) deposition of Ti in the upper regions of the reactor; e) formation of finely dispersed Ti in the crucible. All these effects can be Card8/10 minimised by increasing the pressure of argon and by

SOV/149-58-5-11/18

The Effect of Physical Conditions During the Sodium-thermal Reduction of Titanium Chlorides on the Particle Size of Titanium

employing faster rates of admission of ${
m TiCl}_{\mu}$.

iv) when the conditions are such that the chlorides formed during the reaction form fusible mixtures (i.e. at 800°C) the following methods of operating the reaction vessel can be employed: a) no stirring is used and Ti is obtained in the form of loose sponge impregnated with the excess Na and sodium chlorides. Most of the latter constituent together with a small amount of sub-chlorides of Ti accumulates in the lower part of the reaction vessel; b) stirring is employed and the amount of sodium used exceeds slightly the theoretically required quantity. Sodium is replenished as it is used up and the fused chloride mixture is periodically removed from the crucible without resulting in any appreciable losses of sodium. Under these conditions, Ti pellets are obtained which also should be periodically removed from the reaction vessel; c) all TiCl4 is reduced in the upper part of the crucible,

where a block of Ti sponge is formed. Molten NaCl Card9/10 containing a small proportion of sub-chlorides of Ti is

SOV/149-58-5-11/18

The Effect of Physical Conditions During the Sodium-thermal Reduction of Titanium Chlorides on the Particle Size of Titanium

drained away and collects at the bottom of the crucible. There are 9 figures and 5 Soviet references.

Moskovskiy institut tsvetnykh metallov i zolota. Kafedra metallurgii legkikh metallov ASSOCIATION:

(Moscow Institute of Non-ferrous Metals and Gold.

Chair of Metallurgy of Light Metals)

SUBMITTED: February 4, 1958

Card 10/10

CIA-RDP86-00513R001550120001-6 "APPROVED FOR RELEASE: 08/09/2001

SOV/136-58-12-10/22

AUTHORS: Shubin, V.A. and Pazukhin, V.A.

LONG THE COMPANIES OF THE PROPERTY OF THE PROP

Formation of Primary Salt Melts and Titanium Incrustations in the Reduction of TiCl, with Sodium (Ob obrazovanii pervichnykh solevykh rasplavov i titanovykh nastyley TITIE:

pri vosstanovlenii TiCl natriyem)

Tsvetnyye Metally, 1958, Nr 12, pp 44-50 (USSR)

PERIODICAL: ABSTRACT: The study of the primary chloride melts formed in the reduction of titanium tetrachloride by sodium is important for elucidating the nature of the formation of the individual grains of the titanium incrustations. The authors describe their study of the reduction on an incrustation whose growth was not restricted by crucible walls and of the composition of the salt melts formed thereby. A steel reactor 150 mm in diameter and 550 mm high (Figure 1) was used to which sodium (and in some experiments magnesium) could be admitted through a copper gauze in an argon atmosphere and flow through porous titanium to react with TiCl4. The reactor had an upper and a lower heater, independent of each other, thermocouples and an observation window. The salts formed dripped continuously into a crucible at a temperature low enough to prevent decom-

Card 1/3 position and were later analysed. The deposits formed on

SOV/136-58-12-10/22

Formation of Primary Salt Melts and Titanium Incrustations in the Reduction of ${\rm TiCl}_4$ with Sodium

阿里的中国的国际的国际的国际的国际的国际的

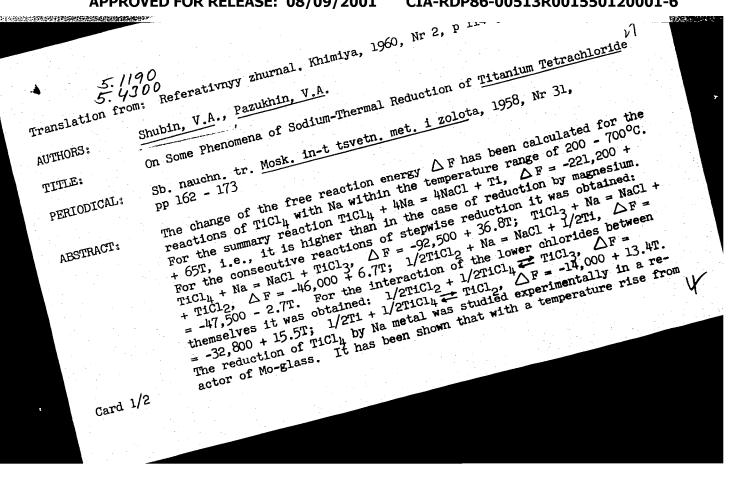
the reaction surface were stripped at the end of a run and examined. TiCl₄ reduction tests were carried out at 750 ± 20 °C (Table 1 shows results obtained with 100 g of sodium and with TiCl₄ feed rates of 1.15-7 g/min) and at 800 ± 20 °C (Table 2 shows results for 40 g sodium and 3.75-7.5 g/min TiCl₄). The titanium grain sizes in incrustations in these experiments were also determined (Table 3). Tests were also carried out under non-isothermal conditions, when local temperatures probably attained 1 200 °C and over. The authors conclude that the reduction of TiCl₄ on a titanium incrustation takes place through lower chlorides which are adsorbed on the titanium surface and remain there either as solid or liquid, depending on the temperature. By reduction of TiCl₄ on a porous base off which the chloride can pour an end product with little or no lower chlorides can be obtained. By reduction of TiCl₄

Card2/3

SOV/136-58-12-10/22

Formation of Primary Salt Melts and Titanium Deposits in the Reduction of ${\rm TiCl}_4$ with Sodium

on a porous base either with sodium or magnesium, titanium-enriched growths can be obtained in which the grain sizing of the titanium sponge is similar to that obtained by the normal magnesium-thermic method. In the reactor used, the growths could be controlled by regulating the rate of filtration of the sodium through the porous base.


There are 6 figures, 4 tables and 2 Soviet references.

ASSOCIATION: Mintsvetmetzoloto

THE STATE OF THE S

Card 3/3

CIA-RDP86-00513R001550120001-6 "APPROVED FOR RELEASE: 08/09/2001

GALKIN, N.P.; MAYOROV, A.A.; SHURIN, V.A.; FOLUEKTOVA, G.B.; KRYLOV, A.S.

Composition of precipitates forming in the reaction of ammonia with aqueous solutions of uranyl sulfate or nitrate. Zhur.neorg.khim.
6 no.10:2319-2324 0 '61.
(Uranyl sulfate) (Uranyl nitrate) (Ammonia)

"APPROVED FOR RELEASE: 08/09/2001

CIA-RDP86-00513R001550120001-6

```
s/078/61/006/010/
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                B121/B101
                                                                                                                                                        Calkin, N, P., Shubin, V. A., Krylov, A. S.
                                                                                                                                                                Chemism of reduction of chemical uranium concentrates
                                                                                                                                                                    Zhurnal neorganicheskoy khimii, v. 6, no. 10, 1961, 2325-2328
                 21.4160
                TEXT: The authors deal with the problem of reducing uranium concentrates of reducing uranium concentrates and second seco
                    TEXT: The authors deal with the problem of reducing uranium concentrates with the problem of reducing uranium concentrates.

The authors deal with the problem of reducing uranium and Fe impurities.

The authors deal with the problem of reducing uranium and Fe impurities.

The authors deal with the problem of reducing uranium and Fe impurities.

The authors deal with the problem of reducing uranium and Fe impurities.

The authors deal with the problem of reducing uranium concentrates.

The authors deal with the problem of reducing uranium concentrates.

The authors deal with the problem of reducing uranium concentrates.

The authors deal with the problem of reducing uranium concentrates.
LUTHORS
                            They studied the reduction of ammonium and sodium uranyl sulfates were hydrogen in the presence of iron or aluminum oxides. The samples were hydrogen in the presence of iron or NaOH with NO SO at a pH of 7-8 and a prepared by reacting NH OH or NaOH with NO SO.
       TTLE
                                nydrogen in the presence of iron or aluminum oxides. The samples we prepared by reacting NH<sub>4</sub>OH or NaOH with UO<sub>2</sub>SO<sub>4</sub> at a pH of 7-8 and a prepared by reacting NH<sub>4</sub>OH or NaOH with UO<sub>2</sub>SO<sub>4</sub>
                                        temperature of 80°C, and by adding the relevant Al or Fe cation. The decomposition of ammonium uranyl sulfate in a hydrogen atmosphere at decomposition of ammonium (NH.) (UO2) 50. (OH).
                                              decomposition of ammonium uranyl sulfate in a hydrogen atmosphere at +3H2O.

350°C obeys the equation: (NH4)2(UO2)2SO4(OH)4 to the equation:

At 550°C, the UO3 formed continues to decompose according to the
                                                           300_3 -30_3 +1/2 0_2 0_2 0_3 0_4 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 0_5 
                                                               reduction with hydrogen: 0.3 + H_2 \rightarrow 0.2 + H_20; 0.3 + H_2 \rightarrow 0
                                                                       card 1/3
```

27898 s/078/61/006/010/005/010 B121/B101

Chemism of reduction of chemical...

 $\text{UO}_2\text{SO}_4 + 5\text{H}_2 \longrightarrow \text{UO}_2 + \text{H}_2\text{S} + 4\text{H}_2\text{O}$. The decomposition of sodium uranyl sulfate in a hydrogen atmosphere takes place according to the following equations: $Na_2(UO_2)_2SO_4(OH)_4 \longrightarrow UO_2SO_4 + 2NaOH + UO_3 + 2H_2O;$ $2NaOH + 2UO_3 \longrightarrow Na_2U_2O_7 + H_2O;$ 00_2 SO₄ + 2NaOH \rightarrow Na₂SO₄ + 00_3 + 00_3 + 00_3 + 00_4 The reduction of uranium (VI) from the ammonium salt takes place quantitatively, and uranium (VI) is reduced from the sodium salt in an amount of 52.6 % only. Sodium diuranate was reduced in order to study the effect of sodium on the reduction of uranium (VI) compounds. Sodium diuranate is reduced in two stages: $Na_2 U_2 O_7 + H_2 \longrightarrow 2NaUO_3 + H_2 O_5$; $2NaUO_3 + H_2 \longrightarrow 2UO_2 + 2NaOH_6$ Moreover, reduction of the sulfates results in the formation of H2S which forms Na2S with NaOH. The presence of sodium and iron interferes with the reduction of uranium (VI). The reduction degree of uranium (VI) from ammonium uranyl sulfate in the presence of iron hydroxide at 550°C is 64.6 % after hr. The phase composition of the reduction products in the presence of iron hydroxide was determined by x-ray analysis. UO2, U308, uranyl sulfate, and iron monouranate were found in the radiogram after a Card 2/3

27898 S/078/61/006/010/005/010 B121/B101

Chemism of reduction of chemical,

reduction time of 15 min. At 550°C, uranium (VI) of iron-containing camonium uranyl sulfate is almost entirely reduced by H₂ after 4 hr UO₂, FcS, and metallic Fe were the end products. The formation of iron sulfide interferes with the reduction of ammonium uranyl sulfate in the presence of iron hydroxide. Aluminum hydroxide does not affect the reduction; it behaves like a mechanical impurity. On reduction, the compounds studied gave the same final compounds as are obtained by reduction of chemical concentrates. There are 1 figure, 2 tables, and 3 references: 2 Soviet and 1 non-Soviet. The reference to the English-language publication reads as follows: Ch. D. Harringston, A. E. Ruehle. Uranium Production

SUBMITTED: September 14, 1960

W

Card 3/3

s/064/62/000/009/001/001 B106/B186

AUTHORS:

Galkin, N. P., Shubin, V. A., Krylov, A. S.

TITLE:

High-temperature hydrolysis of silicon tetrafluoride in the

decomposition products of fluosilicic acid

Khimicheskaya promyshlennost', no. 9, 1962, 11-13

TEXT: With a view to the preparation of hydrofluoric acid from fluorinecontaining waste gases of the phosphoric acid fertilizers industry, an investigation was made of the high-temperature hydrolysis of silicon tetrafluoride in the decomposition products of fluosilicic acid by way of the reaction SiF₄ + 2 H₂0 == 4 HF + SiO₂. According to Ref. 6 (F. A. Lenfesty, T. D. Farr, J. C. Brocher, Ind. Eng. Chem., 44, no. 6, 1448 (1952)), the equilibrium constant of this reaction obeys the equation log $K_p = 5.547 - 6383/T$. Using that equation it was established that the degree of hydrolysis of silicon tetrafluoride during the thermal decomposition of fluosilic acid of different concentrations increases with decreasing concentration of the initial fluosilicic acid and with rising reaction temperature. When 5% fluosilicic acid is decomposed, a virtually Card 1/2

High-temperature hydrolysis of ...

S/064/62/000/009/001/001 B106/B186

quantitative hydrolysis of SiF₄ starts from 600°C, whereas in the case of 35% fluosilicic acid it does not occur below 1100°C. Decomposition of 50% H2SiF6 at 900-1000°C gives a gas mixture containing approximately 40 mole% HF and approximately 57% H20. After the hydrolysis of SiF4 the gas mixture (HF, H20, SiF4) was conducted over glowing coal at temperatures exceeding 800°C, whereby the water vapor was reduced. The HF concentration in the gas phase increased from 19.2 to 27.3 mole% as the temperature of SiF₄ hydrolysis and the temperature of reduction increase from 800 to 1050°C, while the concentrations of water vapor and of silicon tetrafluoride drop from 5.4 to 0.7, and from 4.1 to 1.6%, respectively. The concentrations of hydrogen (approximately 37.5%) and CO (approximately 30%) remain virtually constant while the CO2 content decreases from 5.1 to 2.6%. These laboratory data are close to the calculated equilibrium values. This indicates that the temperature dependence of the hydrolysis constant of silicon tetrafluoride as used here holds also for temperatures above 800°C. There are 3 figures and 3 tables. The English-language reference is: A. H. Stuewe, Chem. Eng. News, 36, no. 51, 34 (1957).

Card 2/2

GALKIN, N.P.; SHUBIN, V.A.; KRYLOV, A.S.

High temperature hydrolysis of silicon tetrachloride in decomposition products of silicohydrofluoric acid. Khim.prom. no.9:635-637 S (MIRA 15:11)

162.

(Silicon chloride) (Hydrofluoric acid) (Hydrolysis)

GALKIN, N.P.; SHUBIN, V.A.; KRYLOV, A.S.

Thermodynamic analysis of interaction between hydrofluoric acid vapors and carbon. Khim.prom. no.10:750-753 0 162.

(Hydrofluoric acid)

(Carbon)

(Thermochemistry)

"APPROVED FOR RELEASE: 08/09/2001

CIA-RDP86-00513R001550120001-6

L 10603-63

BDS

ACCESSION NR: AP3000944

5/0064/63/000/003/0030/0032

AUTHOR: Galkin, N. P.; Shubin, V. A.; Kry*lov, A. S.

Several possible methods for the production of hydrogen fluoride

SOURCE: Khimicheskaya promyshlennost, no. 3, 1963, 30-32

TOPIC TAGS: hydrogen fluoride, HF

ABSTRACT: This is a literature survey on methods of making HF. No original work

is reported.

ASSOCIATION: none

SUBMITTED: 00

DATE ACQD: 31May63

ENCL: 00

SUB CODE: 00

NO REF SOV: 005

OTHER: 014

GALKIN, N. P.; SHUBIN, V. A.; KRYLOV, A. S.

Some possible methods of producing hydrogen fluoride. Khim. prom. no.3:190-192 Mr 163. (MIRA 16:4)

(Hydrofluoric acid)

GALKIN, N.P.; SHUBIN, V.A.; KRYLOV, A.S.; SENATOV, A.D. Thermodynamic analysis of the process of condensation of hydrogen fluoride from its mixture with water vapor, hydrogen, and carbon monoxide. Khim.prom. no.9:686-690 S '63. (MIRA 16:12)

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R001550120001-6"

GALKIN, N.P.; SHUBIN, V.A.; KRYLOV, A.S.; SENATOV, A.D.

Ammonium fluorides and the recovery of fluorine from waste gases. Khim, prom. no.10:752-754 0 163. (MIRA 17:6)

<u> </u>			 .				
	SHIBIN	V.A., kapil. vete	rin, muk				
	,,,,,,	Comunicative diag	nosis of Mycopiaso no.12:36-37 D 162	no lufe-tion an	d yllamin A de (M	floteney. Ind (829)	
			and the second of the second o	•			
		1. Vsesoyuznyy	nstitut eksperimer	arul, noh herecar	natrija		
							-
			- 		·and a second of the second	emakea erejinerin gir ga	

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R001550120001-6"

SHUBIN, V.A., kand. veter. nauk

ARKER BUREAU BORRES AND STREET

Differential histological diagnosis of respiratory Mycoplasma infection and aspergillosis in poultry. Veterinariia 42 no.8:35-38 Ag '65. (MIRA 18:11)

1. Vsesoyuznyy institut eksperimental'noy veterinarii.

SHUBIN, V. A.

SHUBIN, V. A.: "The Pathological Anatomy of the Malignant Course of Cattle Hoofand-Mouth Disease." All-Union Inst of Experimental Veterinary Medicine, Min Agriculture USSR. Moscow, 1956. (Dissertation for the Degreeof Candidate in Veterinary Science)

So: Knizhnaya Letopis', No. 19, 1956.

CIA-RDP86-00513R001550120001-6 "APPROVED FOR RELEASE: 08/09/2001

SHUBIN, V.A., kandidat veterinarnykh nauk. Pathological histology in malignant anthrax in cattle. Veterinariia

(MIRA 10:9) 34 no.8:30-32 Ag 157.


Vsesoyuznyy institut eksperimental'noy veterinarii.
 (Pustule, Malignant) (Histology, Pathalogical)

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R001550120001-6"

SKORIN, I.Ye., kand.biol. nauk; SHUBIN, V.A., kand.vet.nauk.

Foot-and-mouth disease in saigas. Veterinaria 35 no.10:49-54 0 '58.
(MIRA 11:10)

1.Vsesoyuznyy institut eksperimental'noy veterinarii.
(Foot-and-mouth disease) (Saiga-Diseases and pests)

SHCHUREVSKIY, V.Ye., kand.veterin.nauk; SHUBIN, V.A., kand.veterin.nauk

Throughout the Soviet Union. Veterinariia 36 no.10:94-95
0 '59. (MIRA 13:1)

(Pathology--Congresses)

Situbin, V. A. and Lursevich, F. F. (and Vet Sci - (veth))

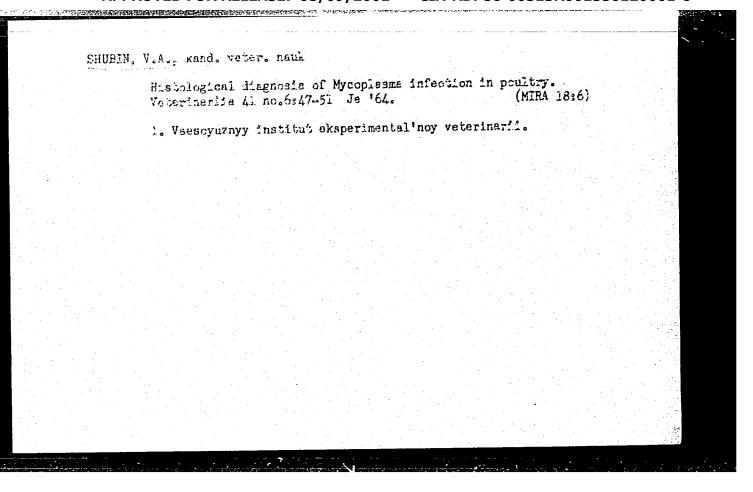
"Some peculiarities of malignant foot-and-mouth disease."

Veterinariya, Vol. 37, No. 6, 1960, p. 25

KOVALENKO, Ya.R.; FOMINA, A.Ya.; FEOKTISTOV, P.N. [deceased]; AKULOV, A.V.; MITROPOL'SKIY, A.S.; SHUBIN, V.A.

THE PERSONAL PROPERTY OF THE P

Observations on the course of the chronic respiratory disease in chickens. Veterinariia 37 no.12:34-42 D '60. (MIRA 15:4) (Poultry-Diseases and pests) (Respiratory organs-Diseases) (Mycoplasma gallinarum)


GALKIN, N.P.; SHUBIN, V.A.; SENATOV, A.D.; KRYLOV, A.S.

Thermal decomposition of waste waters containing a nitrate ion. Khim. prom. no.2:87-91 F '63. (MIRA 16:7)

(Sewage--Purification) (Nitrates)

FISHELEVICH, M.; SOKOLOVA, L.M.; TROKHIN, V.K.; IVASHCHENKO, S.A.; VASIL'KOV, G.V.; BORISOVICH, Yu.F.; OVSYANOV, N.I.; AMINOV, S.A.; SUVOROV, P.S.; SHUBIN, V.A.; CHIZHOV, A.

Information and brief news. Veterinariia 41 no.3:118-126 Mr '64. (MIRA 18:1)

FOMING, A.Ya., wand. voterin. nauk GRUSHEVA, G.A., kand. veterin. nauk; SHUBIN, V.A., kand. veterin. nauk
Studying the strains of Escherichia coli isolated from poultry with Mycoplasma infection. Veterinariia 41 no.1:27-30 Ja *65.

(MIRA 18:2)

1. Vseaoyuznyy institut eksperimental noy veterinarii.

SOKOLOV, B.N.; SHUBIN, V.A.

Concerning the possibility of finding new kimberlite bodies in the region adjacent to the pipe "Mir. Razved. i okh. nedr 30 no.12:12-15 D 64. (MIRA 18:4)

1. Batuobinskaya ekspeditsiya.

L 1995 - 46 WI(1)/WI(#)/WP(b)/EII IJP(c) JD/ ACC NR: AP6008780 SOURCE CODE: UR/0115/66/000/001/0057/0061

AUTHOR: Orlova, M. P.; Kats, G. A.; Astrov, D. N.; Belyanskiy, L. B.;

Shibayeva, O. A.; Shubin, V. E.

B

ORG: none

TITLE: Alloyed germanium for low-temperature thermometry

SOURCE: Izmeritel'naya tekhnika, no. 1, 1966, 57-61

TOPIC TAGS: thermometry, germanium alloy, thermometer

ABSTRACT: The results are reported of an experimental investigation of the galvanomagnetic properties of Ge doped with various amounts of Sb; As; In; Ga; the Ge properties were studied in a range of temperatures from room to liquid helium in order to find out the best impurity and its concentration suitable for low-temperature thermometers. Most measurements were made with Sb-doped Ge

Card 1/2

UDG: 546.289.001.5:536.531

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R001550120001-6"

()

· L 39557~66 ACC NR: AP6008780

whose Nd was $4.6 \times 10^{16} \angle \text{ Nd} \le 1 \times 10^{17}$ per cm³; the resistivity was found to be 0.00042-0.00046 ohm·m at 20-4.2K; acceptor-impurity concentration, Na ≤ 0.1 Nd. A few thermometers were made from Sb-doped Ge (Nd = 5×10^{16} per cm³, K = 6%) for the 40-4.2K range; their resistivity was 0.025-0.027 ohm·m at boiling-helium temperature. The relation $\lg \wp (1/T)$ was satisfactory for these thermometers only under 7K. A relatively high value of magnetoresistance of doped Ge is noted. Orig. art. has: 4 figures, 4 formulas, and 4 tables.

SUB CODE: 20, 09 / SUBM DATE: none / ORIG REF: 003 / OTH REF: 016

Card 2/2 \ S

SHUBI , V. F.

THE RESIDENCE OF THE PROPERTY OF THE PARTY O

The Committee on Stalin Prizes (of the Council of Ministers USSR) in the fields of science and inventions announces that the following scientific works, popular scientific books, and textbooks have been submitted for competition for Stalin Prizes for the years 1952 and 1953. (Sovetskaya Kultura, Moscov, No. 22-40, 20 Feb - 3 Apr 1954)

Name

Title of Work

Nominated by

Shubin, V. F.

Republic"

"Farming in the Monogolian Stalingrad Agricultural Institute

SO: 4-30604, 7 July 1954

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R001550120001-6"

SHUBIN, V. F.

Zemledelie Mongolskoi Narodnoi Respubliki Agriculture in the Mongolian People's Republic. Moskva, Izd. Ak. nauk SSSR, 1953. 346 p.

S0: Monthly List of Russian Accessions, Vol. 7 No. 1 April 1954.

- 1. SHUBIN, V.F., Prof.
- 2. USSR (600)
- 4. Gobi Agriculture
- 7. Agricultural utilization of the Mongolian Gobi, Priroda 42 no. 4, 1953.

9. Monthly List of Russian Accessions, Library of Congress, APRIL 1953, Unclassified.

USSR/Cultivated Plants. General Problems.

Abs Jour: Ref Zbur-Biol., No 5, 1958, 20185.

Y. F. Shubin Author

The problem of Arranging the Correct Rotations of Crops Inst Title

and Putting Virgin Soil and Waste Land into Well-Ordered

(K voprosu o postroyenil pravilnybh Sevoeberotev i poryadke

ispol'zovaniya tselinnykh i zalezhnykh zemel').

Orig Pub: Tr. Stalingr. s.-kr. in-ta. 1955, 6, 24-36.

Abstract: The problem of intraducing rational crop rotations into the arid rayons of the Southeast is discussed with a view

toward supplying food for livestock raising through sowing grass in addition to winter craps, organizing the

patches to be used for the yield, as well as arranging

: 1/2 Card

www.al Problems.

M

M

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R001550120001-6"

SHUBIN V.F.

USSR/Engineering--Irrigation

Card 1/1

Pub. 86--19/39

Authors

Shubin, V. F., Prof.

Title

Arshan'-Zel'men' (name of a wet-weather stream)

Periodical

Priroda 44/1, 95--98, Jan 1955

Abstract

A description is given of an irrigation project in the region south of Stalingrad where, by the building of dams, canals and aqueducts, a considerable area of unproductive land has been made available for agriculture. The figures for dimensions, quantities of water, etc. are stated. Exact data are given of precipitation and other climatic features. Illustrations.

Institution :

Stalingrad Agricultural Institute

Submitted

. . .

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R001550120001-6"

SHUBIN, V.F.

USSR/Cultivated Plants - General Problems.

M-1

Abs Jour

: Ref Zhur - Biol., No 20, 1958, 91580

Author

: Shubin, V.F.

Inst

. -

Title

The Fields of Rotherhamstead.

Orig Pub

: Zemledeliye, 1957, No 2, 66-77.

Abstract

The system of organizing field experiments at Roterhamstead Experimental Station (in England) and the length of the experiments (the station was organized in 1835) allow an objective conclusion to be made on the dynamics of soil processes and on the regularities in the interrelations between soil and plants. Some of the results of the classical, prolonged and permanent sowings at the experimental fields of Broadbalkfield, Housfield, Barnfield, Park Grass, and Long-House are examined and the history of the organization of this experimental station is briefly described.

Card 1/1

- 6 -

SHUBIN V.L. professor.

New textbook on agriculture ("Agriculture" by A.A. Verbin and others. Reviewed by V.F. Shubin). Zemledelie 5 no.4:88-91 Ap *57. (MLRA 10:6)

1. Stalingradskiy sel'skokhosyaystvennyy institut.
(Agriculture--Study and teaching)
(Verbin, A.A.)

SHUBIN, V.F., doktor sel'skokhozyaystvennykh nauk.

Gultivation practices for high crop yields on virgin lands of the Yolga Valley. Zemledelie 5 no.10:36-bl 0 '57.

(Yolga Valley—Tillage)

(Yolga Valley—Tillage)

SHUBIN, V.F., prof.; ZOTIN, V.P., agronom

Collective farm of advanced cultivation practices. Zemledelie
5 no.12:63-70 D '57. (MIRA 11:1)

1.Kolkhoz "Iskra" Bogorodskogo rayona, Gor'kovskoy oblasti
(for Zotin).
(Bogorodsk District, Gorki Province-Collective farms)

SHUBIN, V.F., doktor sel'skokhozyaystvennykh nauk.

Crop rotation with a nonrotating field. Zemeledelie 6 no. 6:60-65

Je '58.

(Novo-Annenskiy District—Rotation of crops)

RADOV, A.S.; SHUBIN, G.A.; TOPILIN, Ye.K.; BEGUCHEV, P.P.; GUDKOV, A.N.;
VEUENYAPIN, G.Ye.; SHUBIN, V.F.; RASKHODOV, G.F.; KAZAKHVICH, L.I.;
IVASHCHENKO, P.S.; KONUROV, S.G.; AGAPOV, P.F.; IVANOV, A.F.

Grigorii Mikhailovich Tumin; 1876-1957. Pochvovedenie no.11:
(MIRA 11:12)

(Tumin, Grigorii Mikhailovich, 1876-1957)

SHUBIN, V.F.; SHAROVA, V.A.

张祖师张祖祖**以及武祖祖公司,是四十**年中年初四十年十二年十二年

Effect of prolonged inundations on wild and cultivated plants in the Tsimlyansk Reservoir area. Bot.zhur. 43 no.12:1724-1727 D 58. (MIRA 11:12)

 Stalingradskiy sel'skokhozyaystvennyy institut. (Tsimlyansk Reservoir region--Botany)

SHUBIN, Vasiliy Fedorovich; KOYDA, V.A., otv.red.; IVANOV, V.V., red.
izd-va; TEGOROVA, N.F., tekhn.red.

[Reclamation of Chestnut soils of the Volga Valley] Osvoenie
kashtanovykh pochv Povolzh'ia. Moskva, Izd-vo Akad.nauk SSSR,
1959. 134 p.

(Volga Valley--Agriculture)

SHUBIN, V.F., prof.; ARTEMENKO, F.V., kand. sel'skokhoz. nauk

Time of sowing winter crops. Zemledelie 26 no.8:60-63 Ag '64.

(MIRA 17:11)

1. Volgogradskiy sel'skokhozyaystvennyy institut.

SHUBIN, V. F.

"Leprosy in Kara-Kalpak ASSR (Epidemiology and Prophylaxis)." Cand Med Sci, Inst of Malaria, Medical Parasitology, andHelminthology, Moscow, 1953. (RZhBiol, No 8, Dec 54)

Survey of Scientific and Technical Dissertations Defened at USSR Higher Educational I^Nstitutions (12) SO: Sum. No. 556 24 Jun 55

PEREVONCHIKOV, I.N., red.; SHUBIN, V.F., kand.med.nauk

[Leprosy; diagnosis and prophylaxis; a manual for physicians]

Raspoznavanie i profilaktika lepry; rukovodstvo dlia vrachei.

Moskva, Medgiz, 1957. 230 p. (MIRA 11:1)

(IMPROSY)

USSR/Microbiology - Microbes Pathogenic In Man and Animals.

F.

Abs Jour

: Ref Zhur - Bioli, No 15, 1958, 67405

Author

: Shubin, V.F.

Inst

: Science Research Institute for the Study of Leprosy.

Title

: The Advisability of Strict Isolation of Those Sick with

Leprosy.

Orig Pub

Inform. byul. N.-i, in-t po izuch. lepry, 1957, No 2, 3-

8.

Abstract

No abstract.

Card 1/1

NIKITINA, N.V.; STUDNITSIN, A.A.; SHIPIN V.

Problems in leprosy control in the U.S.S.R. Vest.derm. i ven.

34 no.11:3-6 N '60.

(LEPROSY prev. & control)

SHUBIN, V.F. (Slavyansk, Donetskoy oblasti)

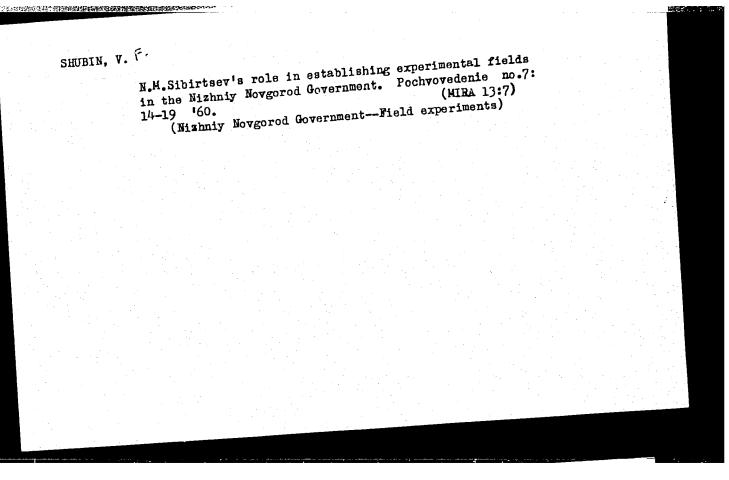
Endocardial fibroelastosis in adults. Vrach.delo no.9:136-137 S
(MIRA 15:8)

'62. (HEART--DISEASES)

SHUBIN, V.F.

Use of the proper indices in the evaluation of the functional state of an organism. Vop. kur., fizioter. i lech. fiz. kul't. no.6:521-526 '63. (MIRA 17:8)

1. Iz klinicheskogo Gurzufskogo sanatoriya Ministerstva oboromy SSSR.


	COMPLET : CLOTESO V	USSR Cultivated Flants. General Problems.
	W. 2515	Ref Zhar -Biclosiya. 1. 1. 1000 10. 1540
		intbin, V.F. NOT given Appretently for Pigh Yields from the Virgin Lond along the Volge (Povolgh), e).
	3	Zemledeltya, 205/, Nalo, 36-41
		problems are discussed of tilling the virgin plots on the Chestnut and Light Chestnut Povolahiye soils, as well as of pre-plenting soil tractment, crop and variety selection. Heasurer for controling soil enceion and agricultural pests.
•		

SHUBIN, V., prof., doktor anl'skokhozyaystvennykh nauk

Clean fallows in the southeast. Nauka i pered. op. v sel'ktos.
8 no.9:16-18 S 158.

(WIRA 11:10)

(Volga Valley--Fallowing)

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R001550120001-6"

Minim, W. F.

3 ltivation f Foot-and-Mouth Disease Virus". (A Farer). <u>Sov. veterin.</u>, 1936, No. 6.

USSR/Medicine - Veterinary, New Drugs Sep 53	of inflamation and abscess of the submaxillary lymphatic nodes followed by complete recovery within 6-7 days. If the abscess is lanced, better results can be obtained if ASD-f2 is administered intravenously simultaneously with local application of ASD-f3.	STOUT

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R001550120001-6"

SHUBER, V. F.

USSR/Medicine - Veterinary

FD-479

Card 1/1

: Pub. 137 - 20/24

Author

Shubin, V. F. and Komarov, B. A., Veterinary Physicians (reviewers)

waste transcraption and assess.

Title

: Few comments on the book 'Laboratornyye metody issledovaniya v veteri-

narii' (Laboratory methods of research in veterinary science), Volume I

Periodical

: Veterinariya, 7, 55-58, Jul 1954

Abstract

This volume (586 pp, published Moscow 1953, by Sel'khozgiz) has been enthusiastically received by veterinary specialists and laboratory workers. The need for an up-to-date text has long been felt, mainly because the old texts on the subject have become obsolete. This volume is an excellent practical text for identification of many infections in spite of the fact that quite a few errors, inaccuracies, and misprints have crept into some of its 17 chapters. Chapter 16 contains excellent information on the characteristics of ticks of the order of Acorina and on the features that distinguish arachnida from insects and other arthropoda. The text is well illustrated. The reviewers express regret

that only 7,000 copies of the book were printed.

Institution :

Submitted

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R001550120001-6"

L 147381-66 WP(e)/EWT(m)/EWP(v)/T WW/WH

ACC NR: AP6028036 SOURCE CODE: UR/0413/66/000/014/0053/0053

INVENTOR: Ol'shanskiy, N. A.; Mordvintseva, A. V.; Shubin, F. V.

ORG: none

TITLE: Method of welding graphite with graphite. Class 21, No. 183851

SOURCE: Izobret prom obraz tov zn, no. 14, 1966, 53

TOPIC TAGS: graphite, graphite welding, filler

ABSTRACT: An Author Certificate has been issued for a method of welding graphite with graphite. To obtain a uniform weld, a graphite bar is used as the filler material. [Translation]

SUB CODE: 11/ SUBM DATE: 04Jun62/

Card 1/1 mjs

UDC: 621.791.752.042

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R001550120001-6"

SHUBIN, V.G.; RASHKOVSKIY, Ya.Z., redaktor; SIAVOROSOV, A.Kh., redaktor;

NADEINSKAYA, A.A., tekhnicheskiy redektor

[Unified state system of coordinates for geodetic and mine surveys.]

A PARTICIPATION OF THE PROPERTY OF THE PROPERT

[Unified state system of coordinates for geodetic and mine surveys]

Bdinaia gosudarstvennaia sistema koordinat dlia geodezicheskikh i

marksheiderskikh rabot. Moskva, Ugletekhizdat, 1954. 93 p.

(Geodesy) (Map-projection) (MLRA 8:6)

CIA-RDP86-00513R001550120001-6 "APPROVED FOR RELEASE: 08/09/2001

KOPTYUG, V.A.; SHUBIN, V.G.; REZVEKHIN, A.T.

Rapid migration of the methyl group in a heptamethylbenzenonium ion. Izv. AN SSSR Ser. khim. nc.1:201-202 165.

(MIRA 18:2)

1. Novosibirskiy institut organicheskoy khimii Sibirskogo otdeleniya AN SSSR.

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R001550120001-6"

KOPTYUG, V.4., REZVUKHIN, A.I., SHUBIN, V.G., KORCHAGINA, D.V.

Complexes of aromatic hydrocarbons with metal halides and hydrogen halides. Part 2: Proton magnetic resonance spectra hydrogen halides of methylbenzenes with aluminum bromide and of complexes of methylbenzenes with aluminum bromide and hydrogen bromide. Zhur. ob. khim. 35 no.5:864.—870 My '65.

1. Novosibirskiy institut organicheskoy khimii Sibirskogo otdeleniya AN SSSR.

KCPTYUG, V.A., SHUBIN, V.G., BAYEVA, I.K., KORCHAGINA, D.V., KOMAGOROV, A.M., REZVICHIN, A.I.

Complexes of arcmatic hydrocarbons with metal halides and hydrogen halides. Part 3: Infrared absorption spectra of complexes formed by methylbenzene with aluminum bromide and hydrogen bromide.

Zhur. ob. khim. 35 no.6:1111-1116 Js '65. (MIRA 18:6)

1. Novosibirskiy institut organicheskoy khimii.

4

KUZ'MINSKIY, Semen Pavlovich; SHUBIN, Vladimir Grigor'yeyich;

RODIONOV, L.Ye., otv.red.; SLAVOROSOV, A.Kh., red.izd-va;

LOMILINA, L.N., tekhn.red.

[Triangulation in mine surveying; principles of higher

geodesy] Rudnichmaia triangulatatia; osnovy vysshei geogeodesy] Moskya, Ugletekhizdat, 1959, 287 p.

(Triangulation) (Mine surveying)

(Mine surveying)

KOPTYUG, V.A.; BAYEVA, I.K.; SHUBIN, V.G.; KORCHAGINA, D.V.;
KOMAGOROV, A.M.; REZVÜKHIN, A.I.

Infrared spectra of protonated aromatic hydrocarbons. Izv.
AN.SSSR.Ser.khim. no. 5:948 My '64. (MIRA 17:6)

1. Novosibirskiy institut organicheskoy khimi Sibirskogo otdeleniya AN SSSR.

NESHIK, A.F., inzh.; SHUBEN, V.I., inzh.

Improved gas burner for rotary kilns. Hauch. soob. NIITSementa (HIRA 15:2)

(Cas burners)
(Kilns, Rotary)

BUDNIKOV, P.P.; SOKHATSKAYA, G.A.; SHUBIN, V.I.

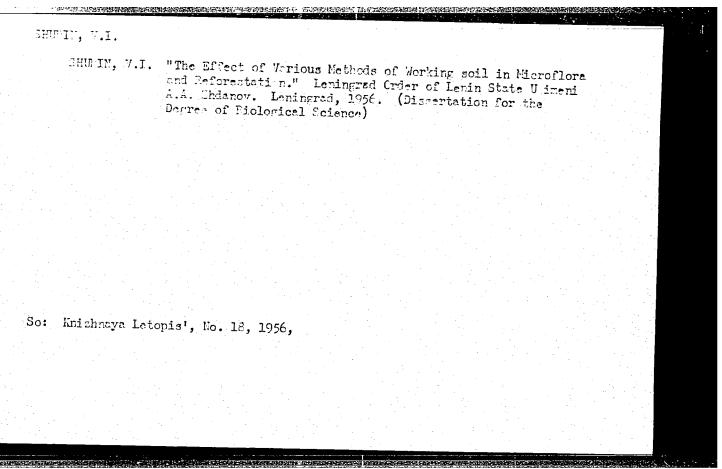
Insulating the refractory lining in the clinkering zone of rotary cement kilns. Ogneupory 29 no.11:508-513 64. (MIRA 18:1)

1. Gosudarstvennyy vsesoyuznyy nauchno-issledovatel'skiy institut tsementnov promyshlennosti.

BUDNIKOV, P.P.; SHUBIN, V.

Investigation of the electrical conductivity of raw cement charges and their mixtures with basic refractories at high charges. Ukr.khim.zhur. 30 no.11:1216-1223 164.

(MIRA 18:2)



SHUBIN, V.I.

Observations on the distribution of Laccaria laccata (FR.)
Cooke. Bot. zhur. 49 no.9:1305-1310 S '64. (MIRA 17:12)

1. Institut lesa Karel'skogo filiala AN SSSR, Petrozavodsk.

K-2

SHUBIN.

USSR/Forestry - Biology and Typology of the Forest.

: Ref Zhur - Biol., No 3, 1958, 10558 Abs Jour

: Shubin, V.I. Author

Karelian Branch of the Academy of Sciences USSR

On the Question of the Growth of Pine and Spruce on an Inst

Organic Substratum. Title

Tr. Karel'sk. fil. Akad Nauk SSSR, 1957, No 7, 127-133 Orig Pub

: A study was made of certain characteristics of the growth Abstract

of self-seeded pines and spruces, both on tree-trunks and on undisturbed forest cover in the Karelian forests. Investigation of the self-seeding process on trunks in the forest indicated that in all cases micorise /mikoriza/ was present in the roots of both the pine and the spruce. When pine and spruce seeds were sown artificially on very

decayed spruce trunks, only the micorised shoots and

Ca Card 1/2

> APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R001550120001-6"

(MIRA 11:9)

POPOV, L.V.; SHUBIN, V.I.

Effect of forest litter on surface soil temperature in clearings of the central taiga zone. Izv. Sib. otd. AN SSSR no.7:102-113 '58.

1. Vostochno-Sibirskiy filial AN SSSR i Karel'skiy filial AN SSSR. (Soil temperature) (Forest litter)

SHUBIN, V.I.; POPOV, L.V.

Studies concerning cultivation practices in young plantations on clear-cut areas of southern Karelia. Trudy Kar.fil. AN SSSR no.16:47-81 '59. (MIRA 13:4) (Karelia--Reforestation)

POPOV, Leonid Vasil'yevich; SIN'KEVICH, Mikhail Stepanovich; SHUBIN, Vladimir Ivanovich; PANKRASHOV, A.P., red.; POD"EL'SKAYA, K.M., tekhn. red.

[Reforestation by seeding in cutover areas] Posev lesa na vyrubkakh. Petrozavodsk, Gos. izd-vo Karel'skoi ASSR, 1961. 108 p. (MIRA 15:2)

(Reforestation)

SHUBIN, V.I.; KUZNETSOVA, A.I.

Special features of establishing forest plantations by surface units in sod covered cutover areas. Trudy Kar. fil. AN SSSR no.25:86-98 '61. (MIRA 14:9)

(Reforestation)

Using organic fertilizers in forest nurseries. Trudy kar. fil.

(MIRA 14:9)

AN SSSR no.25:69-108 '41

(Forest nurseries--Fertilizers and manures)

SHUBIN, V.I.

Characteristics of the spreading of fusarium infeption of pine in cutover areas of Karelia. Trudy Mar.fil.AN SSSR no.34141-146 '62.

(Karelia—Fusarium)

(Karelia—Pine—Diseases and pests)